EQUATIONS FROM GEOMETRY

Triangle

 $h = a \sin \theta$ Area = 1/2bh

(Law of Cosines) $c^2 = a^2 + b^2 - 2ab \cos \theta$

Sector of Circular Ring

(p = average radius, w = width of ring, θ in radians)

Right Triangle

(Pythagorean Theorem) $c^2 = a^2 + b^2$

Ellipse

Area = π ab

Area = θ pw

Circumference $\approx 2\pi \sqrt{\frac{a^2+b^2}{2}}$

Equilateral Triangle

$$h = \frac{\sqrt{3}s}{2}$$

Area =
$$\frac{\sqrt{3}s}{2}$$

Cone

(A = area of base)

Volume =
$$\frac{Ah}{3}$$

Parallelogram

Area = bh

Right Circular Cone

Volume = $\frac{\pi r^2 h}{3}$

Lateral Surface Area = $\sqrt{r^2 + h^2}$

Trapezoid

Area =
$$\frac{h}{2}$$
(a + b)

Frustum of Right Circular Cone

Volume = $\frac{\pi(r^2 + rR + R^2)h}{3}$

Lateral Surface Area = π s(R + r)

Circle

Area =
$$\pi r^2 = \frac{\pi d^2}{4}$$

Circumference = $2\pi r$ = πd

Right Circular Cylinder

Area = $\pi r^2 h$

Lateral Surface Area = 2π rh

Sector of Circle

(θ in radians)

Area =
$$\frac{\theta r^2}{2}$$

 $s = r\theta$

Sphere

Volume =
$$\frac{4}{3}\pi r^3$$

Surface Area = $4\pi r^2$

Circular Ring

(p = average radius, w = width of ring)

Wedge

(A = area of upper face,

B = area of base)

 $A = B \sec \theta$

